TI SiC闸极驱动器提高牵引逆变器效率

牵引逆变器是电动车(EV)中的主要耗电零件,功率位准达到150kW以上。牵引逆变器的效率和性能直接影响了电动车单次充电後的行驶里程。因此,为了打造下一代牵引逆变器系统,业界广泛采用碳化矽(SiC)场效应电晶体 (FET) 来实现更高的可靠性、效率和功率密度。

隔离式闸极驱动器积体电路(IC)提供从低电压到高电压(输入到输出)的电流隔离,驱动SiC式逆变器每相的高侧和低侧功率级,并监视和保护逆变器免受各种故障的影响。根据汽车安全完整性等级(Automotive Safety Integrity Level, ASIL)功能安全要求,闸极驱动器IC必须符合国际标准化组织(ISO)26262标准,确保对单一故障和潜在故障的故障侦测率分别为≥99%和≥90%。

闸极驱动器IC必须尽可能以高效率导通SiC FET,同时尽量降低包括导通和关断能量在内的开关和传导损耗。控制和改变闸极驱动电流强度的能力降低了开关损耗,但代价是在开关期间增加了开关节点处的瞬态过冲。改变闸极驱动电流可控制SiC FET的电压转换率。

闸极驱动电流的即时可变性可实现瞬态过冲管理,以及整个高压电池能量周期的设计最佳化。充满电且电量状态为100%至80%的电池应使用低闸极驱动强度,将SiC电压过冲保持在限制范围内。当电池电量从80%下降到20%时,采用高闸极驱动强度可降低开关损耗并提高牵引逆变器效率。这些情况可能发生在75%的充电周期内,因此效率提升显着。

UCC5880-Q1是一款20A SiC闸极驱动器,具备进阶保护功能,适用於汽车应用中的牵引逆变器。其闸极驱动强度介於5A到20A之间,可透过一个4MHz双向序列周边介面汇流排或三个数位输入针脚进行调整。

评估牵引逆变器功率级开关性能的标准方法是双脉冲测试(DPT),它会在不同的电流下开启和关闭SiC电源开关。透过改变开关时间,可以控制和测量工作条件下SiC导通和关断波形,有助於评估影响可靠性的效率和SiC过冲。UCC5880-Q1可即时控制闸极驱动电阻和驱动强度。启用较低的闸极驱动(SiC关断)可减轻功率级过冲。

使用UCC5880-Q1的闸极驱动来降低SiC开关损耗时,效率提升可能非常显着,具体取决於牵引逆变器的功率位准。使用全球统一轻型车辆测试程序(WLPT)和实际驾驶记录速度和加速度进行建模,其结果显示SiC功率级效率提升达2%,相当於每颗电池额外增加7英里的行驶里程。

UCC5880-Q1也包括SiC闸极电压阈值监控功能,可在系统生命周期内每次电动车启动时执行阈值电压测量,并可向微控制器提供电源开关资料,以用於电源开关故障预测。

随着电动车牵引逆变器的功率位准接近300kW,对更高可靠性和更高效率的需求更为迫切。选择具有即时可变闸极驱动强度的SiC隔离式闸极驱动器有助於实现这些目标。

openvpn怎么购买

About the Author

0 0 投票数
Article Rating
订阅评论
提醒
guest
0 Comments
内联反馈
查看所有评论

You may also like these

0
希望看到您的想法,请您发表评论x